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A multilevel VOF approach has been coupled to an accurate finite element Navier–Stokes
solver in axisymmetric geometry for the simulation of incompressible liquid jets with high
density ratios. The representation of the color function over a fine grid has been introduced
to reduce the discontinuity of the interface at the cell boundary. In the refined grid the
automatic breakup and coalescence occur at a spatial scale much smaller than the coarse
grid spacing. To reduce memory requirements, we have implemented on the fine grid a
compact storage scheme which memorizes the color function data only in the mixed cells.
The capillary force is computed by using the Laplace–Beltrami operator and a volumetric
approach for the two principal curvatures. Several simulations of axisymmetric jets have
been performed to show the accuracy and robustness of the proposed scheme.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A stream of liquid matter that enters a gas region and breaks into small liquid masses is a very complex phenomenon that
can occur in many natural and engineering processes. In nature, jets appear on very different spatial scales, ranging from
galaxies to atoms. In industrial applications, many devices require the injection of liquid or gas phases as essential part of
the combustion process or as primary coolant for heat removal. The dynamics of a liquid jet is rather sensitive to the bound-
ary conditions, to the turbulence inside the liquid and to the surrounding gas and, in spite of large efforts, the mechanisms
leading to small fluid structures and droplets are still an open question and object of active research. In recent time, many
studies have investigated jets with direct numerical simulations, using the Volume-of-Fluid (VOF), level set and front track-
ing methods. Front tracking is based on the Lagrangian advection of marker particles that are attached to the interface, while
VOF methods rely on the advection of the volumetric fraction of the reference phase in the grid cells. In the level set method
the interface is given by the zero-level isosurface of a continuous function defined by the signed distance to the interface.
Overviews of several front tracking and front capturing methods can be found in [1,2] for the front tracking, and in [3,4]
for the VOF and level set methods, respectively. Realistic spatial simulations are those involving jets entering at one bound-
ary of the computational domain and developing several instabilities in its interior. The simulation of a three-dimensional
turbulent jet entering a gas environment, with a uniform discretization of the domain, can be found in [5], an example that
illustrates the considerable power of front capturing methods. Other examples can be found in [6–10] or in the reviews
[11,12] and citations therein.

One of the most popular method to track the interface is the VOF technique. In this method the interface is reconstructed
from the color function data representing the fraction of each grid cell which is occupied by the reference fluid phase. The
calculation of the interface geometrical properties, i.e. the local normal and curvature, cannot always be performed
. All rights reserved.
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accurately with a fixed number of cells (a 3 � 3 block of cells in two dimensions and 3 � 3 � 3 cells in three dimensions) by
using standard methods, such as the Parker and Youngs’ reconstruction or the height function method. For this reason, either
smoothing strategies or more complex algorithms with a variable element cell support must be adopted [13,14]. The VOF
method has the potential of an exact conservation of the mass if the advection of the color function is performed correctly
and there is essentially no limit to the complexity of the interface, since breakup and merging events are handled automat-
ically. However, this implicit treatment of the changes in interface topology does not necessarily imply that they represent
the physical reality. For these reasons adaptive grid methods have also been developed, where the domain discretization is
adjusted to follow in a more accurate way the different spatial scales and the temporal evolution of the flow structures [15–
18].

The computation of the singular capillary force is usually a rather delicate task since the local lack of balance with the
pressure gradient is at the origin of the so-called spurious currents which can affect the interface dynamics, both with
the continuum surface force (CSF) method [19], and the ghost fluid method (GFM) [20], that imposes sharper boundary con-
ditions on the interface. However, several improvements have been accomplished in the last years with finite volumes and
the fractional-step pressure-correction method to integrate in time the Navier–Stokes equations. Firstly, with the incremen-
tal form of the predictor step [21], the pressure gradient and the capillary force partially balance each other, and exactly for
the spatially-continuous equations in the case of Laplace’s law. Secondly, the balanced-force approach has shown that spu-
rious currents are greatly reduced if the pressure gradient and the capillary force are estimated at the cell faces and if the
spatial discretization of these two terms is consistent [22,23,14]. More particularly, for a circular droplet Laplace’s law is ex-
actly satisfied if the analytical curvature is used, while the system relaxes by viscous damping towards a numerical equilib-
rium [14] when the curvature is estimated with the height function method. In this case the initial perturbation is
determined by the numerical approximation of the curvature which is not constant along a circular interface.

In previous papers [24,25] we have shown that no spurious currents are generated also with a finite element approach if
the analytical curvature is considered. In this framework Laplace’s law is readily recovered and the force balance on the cell
faces is implemented in a natural way with the integration by parts of the Navier–Stokes equations. In this paper we propose
a multilevel VOF approach combined with a FEM flow solver that improves the representation of the interface by using more
than one linear interface in each cell of the coarse grid, assuring in this way that the automatic breakup and merging events
occur at spatial scales smaller than the coarse grid spacing. This paper addresses mainly situations where the spatial scales of
the flow are fully resolved but the interface still requires a higher resolution. These situations are rather common, for exam-
ple a circular fluid body requires a radius of curvature bigger than five grid spacings even in very simple flows, such as trans-
lations and solid-body rotations, in order not to be distorted to such an extent that the normal and curvature computations
are not enough accurate. In these conditions the grid refinement necessary for the VOF algorithm would be too heavy when
extended to the pressure and velocity fields. The multilevel approach reduces the interface discontinuity at the boundary of
the cells of the coarse grid by increasing the actual resolution, and it computes more accurately the capillary force on the
interface. As a result the balance between discontinuous forces and singular terms is more precise and spurious currents
are reduced. The use of an auxiliary mesh to compute a number of geometrical and physical quantities is not new but it
has been used to improve the evaluation of the normal, curvature and surface tension stresses [26,27].

The approach presented in this paper is somewhat similar to an adaptive refinement method, however it differs deeply as
the mesh subdivisions are only virtual and it does not require any effort for the modification of the mesh, and any extra stor-
age and communication of the flow variables between different levels. In some cases, when the interfacial curvature varies
over orders of magnitude and all the different scales need to be resolved, this methodology becomes clearly inefficient if
compared to an adaptive mesh refinement and it should be combined with some other approach. However in many cases
this further refinement, with respect to the velocity and pressure spatial scales, is required more or less uniformly along
the interface for a smoother representation of the interface itself [27]. Since the number of cells cut by the interface is usually
very low with respect to the total number of cells of the very refined grid, we have implemented a sparse matrix approach in
order to achieve a very compact memorization of the color function data at the highest resolution. In this study we consider
the evolution of an axisymmetric jet in cylindrical coordinates. The principal curvature in the r, z plane is computed with the
Laplace–Beltrami operator, the other curvature is computed on the interface and then extended radially for the volumetric
computation of the capillary force.

In Section 2 we introduce the governing equations and discuss the variational formulation and the multilevel approach. In
Section 3 we present the compact storage scheme of the color function data on the fine grid and the numerical implemen-
tation of the capillary force. In Section 4 we first validate our approach against the analytical linear dispersion relation for
jets and then present the results of the simulations of an axisymmetric jet injected in a gas environment, with different fre-
quencies and inlet velocities. Finally we present our conclusions.
2. Governing equations, variational formulation and finite element model

2.1. Governing equations

In Fig. 1 we consider a typical situation where an axisymmetric liquid jet (reference phase) is injected in a gas environ-
ment (secondary phase). Let X � R3 be a cylindrical domain with boundary C which contains an inlet area, Cin � C, and an



Fig. 1. Domain.
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outlet, Cout � C. The liquid phase is located in Xl(t) with boundary Cl, surrounded by the gas in Xg(t) = X �Xl(t). The inter-
face between the two immiscible fluids is denoted by Cs � Cl.

The liquid distribution in the domain X is defined by its characteristic function v, that changes discontinuously across the
interface from the value one in Xl to zero.

Since each fluid phase does not change by following the fluid paths, the function v behaves like a passive scalar and sat-
isfies a simple advection equation
@v
@t
þ ðu � rÞv ¼ 0: ð1Þ
The velocity u and pressure field p obey the single-fluid formulation of the Navier–Stokes equations, given by the momen-
tum conservation equation
q
@u
@t
þ ðu � rÞu ¼ �rpþr � Tþ Fþ Fs ð2Þ
and the incompressibility constraint
r � u ¼ 0: ð3Þ
The above equations are solved in the computational domain X at times 0 6 t 6 T, with appropriate initial and boundary con-
ditions. For simplicity, we consider Dirichlet boundary conditions at the inlet Cin and homogeneous Neumann boundary con-
ditions at the outlet Cout. In these equations, the rate-of-strain tensor D(u) is defined by
Dij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
ð4Þ
and the corresponding stress tensor T(u) by
Tij ¼ 2lDij ¼ l @ui

@xj
þ @uj

@xi

� �
: ð5Þ
The two fluid phases have both constant density, ql and qg, and dynamical viscosity, ll and lg, respectively. The density q
and viscosity l in (2) are functions of v
q ¼ vql þ ð1� vÞqg ; l ¼ vll þ ð1� vÞlg : ð6Þ
The term F is the given external body force (e.g. gravity) and Fs is the force acting on the interface Cs expressed as a force per
unit length [28]
FsðxÞ ¼
Z

Cs

rjndðx� xsÞdS; ð7Þ
where xs are points on Cs,r is the surface tension coefficient, n the unit external normal, j the sum of the principle curva-
tures (in our convention j < 0 for a liquid drop) and d(x) the volumetric Dirac delta function. In our model the surface tension
coefficient is constant, so we do not consider possible variations of r along the interface line due to temperature gradients or
other effects. The normal n, the curvature j and the interface Cs are all geometrical quantities that can be evaluated from a
given v distribution.

2.2. Variational formulation

Since Eqs. (1)–(3) are not always properly defined in standard functional spaces due to the presence of distributions and
discontinuous functions, we reformulate the problem in variational form. We denote by Hd(X),d P 0, the Sobolev space of all
functions having square integrable derivatives up to order d on X and with k � kd and (�, �)d the standard Sobolev norm and
inner product. When d = 0, we write L2(X) instead of H0(X) and drop the index from the inner product notation. For vector-
valued functions and spaces, we use boldface characters. For example, Hd(X) denotes the space of vector-valued functions
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such that each component belongs to Hd(X). Of special interest are the spaces H1(X), equipped with the norm

kvk1 ¼
P2

j¼1kv jk2
� �1=2

, and L2
0ðXÞ, the space of square integrable functions having zero mean over X. Because of the Dirichlet

boundary condition on Cin, we also introduce the subspace H1
Cin
ðXÞ � H1ðXÞ of functions which are vanishing on Cin, and H1/

2(Cin), which is the space containing all the restrictions of H1(X) to the boundary Cin. With this notation we introduce the
continuous bilinear and trilinear forms
aðl;u;vÞ ¼ 2
Z

X
lDðuÞ : DðvÞdV ;

bðq;vÞ ¼ �
Z

X
qr � v dV ;

cðq;w;u;vÞ ¼
Z

X
qðw � rÞu � v dV ;

ð8Þ
"u,v,w 2 H1(X) and 8q 2 L2
0ðXÞ. The density q and the viscosity l, which are positive function in L1(X), have been defined in

(6). For details about the function spaces we have introduced and the bilinear and trilinear forms and their properties, one
may consult [29,30].

The weak form of the two-phase Navier–Stokes equation, can be obtained by multiplying (2) with a test function v and by
integrating over the domain X
q
@u
@t
;v

� �
þ cðq;u;u;vÞ þ bðp;vÞ þ aðl;u;vÞ ¼ ðF;vÞ þ ðFs;vÞ ð9Þ
for any test function v 2 H1
Cin
ðXÞ. In a similar way the constraint (3) becomes
bðq;uÞ ¼ 0 ð10Þ
for any test function q 2 L2
0ðXÞ. The gravity term is defined by
ðF;vÞ ¼ ðqg;vÞ ð11Þ
and the surface tension by
ðFs;vÞ ¼
Z

Cs

rjn � v dS: ð12Þ
To evaluate the above interface integral, we first replace the curvature term by the Laplace–Beltrami operator
rs ¼ ðI � nnÞ � r ð13Þ
and then integrate by parts on C(t)
ðFs;vÞ ¼
Z

Cs

rjn � v dS ¼
Z

Cs

rr2
s xs � v dS ¼ �

Z
Cs

rrsxs : rsv dS; ð14Þ
where we have used the relation jn ¼ r2
s xs. Since we consider only closed interfaces or open interfaces coupled with Dirich-

let boundary conditions, any integral over the boundary of the interface is zero.
The advection equation for v can be written in variational form by multiplying (1) with the test function u 2 C10 ðXÞ and

by applying the divergence theorem
@

@t

Z
X
vudV þ

Z
C
vðu � nÞudS�

Z
X
vu � rudV ¼ 0: ð15Þ
2.3. Finite element discretization and multilevel approach

In numerical approximations we seek solutions in families of finite element spaces. Let us introduce a finite element dis-
cretization of the Cartesian domain X through the mesh parameter h which tends to zero. We subdivide X into a family of
squares of side h which obeys to finite element compatibility constraints on their boundary. Let Xh � H1(X) and Sh � L2

0ðXÞ be
two families of finite dimensional subspaces parameterized by the length h. For Xh and Sh we use standard quadrangular Tay-
lor–Hood spaces which satisfy the usual compatibility assumptions and the LBB condition. We denote with uh and vh the
solution and any test function in Xh and with ph and qh the solution and any test function in Sh, respectively. The finite ele-
ment Navier–Stokes system becomes
q
@uh

@t
;vh

� �
þ cðq;uh;uh;vhÞ þ bðph;vhÞ þ aðl;uh;vhÞ ¼ ðFs;vhÞ þ ðF;vhÞ; bðqh;uhÞ ¼ 0: ð16Þ
In the remaining of the paper we suppress the h subscript. Now, by starting at the coarse level (c), we subdivide each square
of side h in the Cartesian grid Xc in smaller squares by using the simple midpoint refinement rule up to a fine level (f), with
f = c + l. We indicate with Xc, Sc and Xf, Sf the families of subspaces defined at the coarse and fine levels and with Xc

i and Xf
i the
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corresponding generic cell. We introduce also the space of the piecewise constant functions Pf, which is the span of the set of
all unitary constant functions with compact support over Xf

i and define the color (volume fraction) function in any cell at
level (f) as
Cf
i ¼

Z
X
vuf

i dV ð17Þ
with uf
i 2 Pf . Eq. (15) then becomes
@Cf
i

@t
þ
Z

Cf
i

vðu � nÞdS ¼ 0; ð18Þ
where Cf
i is the boundary of the cell Xf

i . Eq. (17) is the standard definition of the VOF color function and (18) the correspond-
ing advection equation [31,32].

Let us consider a two level scheme, where at the fine level the advection equation is solved geometrically for the color
function Cf

i , while at the coarse level we take into account only large phase structures to compute the pressure and velocity
fields. We introduce also the concept of transfer operators from the fine to the coarse levels of refinement. If some phase
structure is present only at the fine level (f), then the solution (pc,uc) at the coarse level is different from (pf,uf), which sat-
isfies the Navier–Stokes equations with different test functions. In order to compute the transfer operators we consider first
equation (10) and assume that is satisfied by the velocity field at both levels, i.e. b(qf,uf) = b(qc,uc) = 0. We then substitute in
the relation at the fine level the coarse velocity field uc to get
bðqf ;ucÞ ¼
Z

X
qf Rfcðuc;uf ÞdV ; ð19Þ
where the fine-to-coarse mass transfer operator Rfc is defined by
Rfcðuf ;ucÞ ¼ r � ðuf � ucÞ: ð20Þ
The transfer operator Rfc defines the residual error of (10) when the velocity field solution at the fine level is estimated by uc.
We remark that, even if the discrete solutions are divergence-free functions over the finite element mesh, the pointwise
divergences r � uf and r � uc may be different from zero for all x 2X. As a matter of fact, the divergence-free constraints
are

R
X qfr � uf dV ¼ 0 and

R
X qcr � uc dV ¼ 0, but in general

R
X qfr � ucdV–0. In our geometry, the mesh at the fine level (f)

is obtained by midpoint refinement from the coarse level (c), then Sc(X) � Sf(X) and any test function qc can be written
as a linear combination of the test functions qf at the fine level. Therefore, the relation b(qc,uf) = 0 is clearly verified and
0 ¼ bðqc;ucÞ ¼ bðqc;uc � uf Þ ¼
Z

X
qcRfcðuc;uf ÞdV : ð21Þ
Under the above assumptions, there is no net mass transfer from the fine to the coarse level. In actual computations we solve
only the velocity field at the coarse level and we project it to the fine level to advect the color function. If the projection does
not preserve the divergence-free constraint, then the transfer operator is not zero and it must be taken into account as an
artificial source.

Now we estimate the momentum equation error of the two–level scheme. Let (pf,uf) be the solution of the Navier–Stokes
equation at the fine level
q
@uf

@t
;vf

� �
þ cðq;uf ;uf ;vf Þ þ bðpf ;vf Þ þ aðl;uf ;vf Þ ¼ ðF;vf Þ þ ðFf

s ;v
f Þ: ð22Þ
Now we substitute the solution (pc,uc) of the coarse grid in (22)
q
@uc

@t
;vf

� �
þ cðq;uc;uc;vf Þ þ bðpc;vf Þ þ aðl;uc;vf Þ ¼ ðF;vf Þ þ ðFf

s ;v
f Þ þ ðPfcðpc;pf ;uc;uf Þ;vf Þ þ ðTfcðuc;uf Þ;vf Þ;

ð23Þ
where the fine-to-coarse momentum transfer operator Pfc is defined by
ðPfcðpc; pf ;uc;uf Þ;vf Þ ¼ q
@uc

@t
;vf

� �
þ bðpc;vf Þ þ aðl;uc;vf Þ � cðq;uc � uf ;uc � uf ;vf Þ � q

@uf

@t
;vf

� �

� bðpf ;vf Þ � aðl;uf ;vf Þ ð24Þ
and the fine-to-coarse turbulent transfer operator Tfc by
ðTfcðuc;uf Þ;vf Þ ¼ cðq;uc � uf ;uc � uf ;vf Þ þ cðq;uc;uc;vf Þ � cðq;uf ;uf ;vf Þ: ð25Þ
The momentum transfer operator Pfc defines the difference between the rate of virtual work in the fine and in the coarse
scale, while the turbulent transfer operator Tfc gives the nonlinear contribution from the fine to the coarse level.
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Since the coarse scale is defined by a set of solutions in Xc(X), Sc(X) we must write Eq. (23) with the test functions vc in
Xc(X). We assume that the finite element space on the fine and coarse grid are embedded, namely Xc(X) � Xf(X). This im-
plies that any test function vc can be written as a linear combination of the test functions vf, then
q
@uc

@t
;vc

� �
þ cðq;uc;uc;vcÞ þ bðpc;vcÞ þ aðl;uc;vcÞ ¼ ðF;vcÞ þ ðFf

s ;v
cÞ þ ðSfcðpc;pf ;uc;ucÞ;vcÞ; ð26Þ
where the operator Sfc, which is a function only of the velocity and pressure fields over the coarse grid, is defined by
ðSfc;vf Þ ¼ ðPfcðpc; pf ;uc;uf Þ;vf Þ þ ðTfcðuc;uf Þ;vf Þ

¼ q
@uc

@t
;vf

� �
þ cðq;uc;uc;vf Þ þ bðpc;vf Þ þ aðl;uc;vf Þ � ðFf

s ;v
f Þ � ðF;vf Þ: ð27Þ
Eq. (27) in the multilevel approach is simply the residual of the Navier–Stokes operator at the fine level when the coarse
solution is assumed to be the solution on the fine grid. It should be evident that a small value of the term Sfc in Eq. (26) im-
plies that the interface is accurately resolved and that the computation of normals and curvatures over even finer grids can-
not affect further the velocity and pressure fields on the coarse mesh. Clearly, the optimal situation is when Sfc � 0 which
implies that the fine grid yields a well-resolved interface for an accurate evaluation of the capillary force. If this is not true
then the operator Sfc must be computed directly from (27) and projected over the coarse grid to return the source term in
(26). Alternatively, Tfc and Pfc could be modeled separately as two additional terms in the momentum equation at the coarse
level. In the multilevel approach we are evolving the interface on a fine grid and then projecting the capillary force back on
the coarse grid. The projection to the coarse level, which is basically an integration, may become quickly rather insensitive to
high frequency fluctuations that may appear as we increase the number of refinement levels. The fine level is used only for a
smoother description of the interface, while the relevant physics scales should be resolved at the coarse level in a satisfactory
way. In this paper we consider physical situations and mesh grids where Sfc is approximatively zero and compute Sfc in a few
instances only to evaluate the error of this assumption.

Similarly, if we introduce the coarse velocity field uc in the advection equation for v integrated on the mesh at the fine
level, see Eqs. (17) and (18), we get
Z

X

@v
@t

uf
i dV þ

Z
Cf

i

vðuc � nÞuf
i dS ¼

Z
X

Vfcðuc;uf Þuf
i dV ; ð28Þ
where Vfc is the fine-to-coarse color function transfer operator. The term
Z
X

Vfcðuc;uf Þuf
i dV ¼

Z
Cf

i

ððuc � uf Þ � nÞuf
i dS ð29Þ
represents the error in volume/area due to the use of a velocity field over the fine mesh which is not divergence-free. This
error is again due to the projection of the coarse velocity field to the fine level (f) and can be removed in different ways, for
example with a local redistribution algorithm [31,33]. In the simulations presented in this paper, the volume/area error is
usually very small and is simply ignored.
3. Numerical implementation

3.1. Dimensionless multilevel equations

In order to solve the Navier–Stokes system (16) we use the following nondimensional variables
x� ¼ x
D
; t� ¼ tD

U
; u� ¼ u

U
; p� ¼ p

qlU
2 ; q� ¼ q

ql
; l� ¼ l

ll
; r� ¼ r

rr
;

where D is the jet diameter, U = jul � ugj the relative velocity of the jet at the inlet and rr the surface tension coefficient of the
liquid/gas interface. In the rest of the paper we drop the star superscript in the dimensionless quantities and use the standard
definition of the Reynolds, Weber and Froude numbers
Re ¼ qlUD
ll

; We ¼ qlU
2D

rr
; Fr ¼ U2

jgjD : ð30Þ
Furthermore, Ca = We/Re, Bo = We/Fr and Oh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca=Re

p
are the capillary, Bond and Ohnesorge numbers, respectively. The fi-

nal dimensionless system consists of a set of two equations at the coarse level (c)
qc @uc

@t
;vc

� �
þ cðqc;uc;uc;vcÞ � bðpc;vcÞ þ 1

Re
aðlc;uc;vcÞ ¼ 1

Fr
ðqcg;vcÞ þ 1

We
ðFf

s;v
cÞ; bðqc;vcÞ ¼ 0 ð31Þ
and the advection equation for the color function at the fine level (f)
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Z
X

@v
@t

uf
i dV þ

Z
Cf

i

ðûf � nÞuf
i dS ¼ 0; ð32Þ
where ûf is the projection on the fine level of the nondimensional velocity uc of the coarse level. The density is defined in
each cell of the coarse mesh by qc = qlC

c + qg(1 � Cc) and similarly the viscosity. The color function Cc is computed as the
average of the color functions at the fine level in the same coarse cell. In this paper we assume that the mesh resolution
is high enough so that the terms Pfc, Tfc and Vfc are all negligible.
3.2. Numerical implementation of the multilevel VOF method

The multilevel VOF method advances in time on a Cartesian grid the C data at the fine level (f) by integrating (32) and then
projects the resulting color function Cf and the surface tension force Ff

son the coarse level (c) where the pressure and velocity
fields are computed. Each additional level of grid refinement roughly doubles the number of mixed cells; but even with sev-
eral extra refinement levels, the volume tracking overhead is small, compared to the rest of the calculation.

However, it would require a considerable amount of memory space to store the full matrix of the Cf data, in particular for
three-dimensional computations. Since the spatial distribution of the C field changes in time, all the entries of the color func-
tion matrix must be available and this requires also the storage of empty and full cells which may become mixed cells at
some later time in the simulation.

In this paper we propose a multilevel storage scheme which memorizes the whole matrix of the color function at the
coarse level (c), so that density and viscosity can be computed at this level, but only sparse data at the fine level (f), imple-
menting in this way the storage of the interface data alone at each time step. This allows us to compute the color function
distribution over a highly-refined mesh with an accuracy and efficiency comparable to an adaptive mesh refinement method.
The format is similar to the Compressed Row Storage (CRS) [34]. We illustrate this technique in two dimensions in Fig. 2 by
considering a 5 � 5 Cartesian mesh with the corresponding C data. The extension to three dimensions is straightforward. For
each row we store the number of entries nc, the C data and their column number. Notice that empty cells are not stored,
while a sequence of n consecutive full cells is stored as a single one, with its color function value equal to n in the first inter-
nal cell position. For example in the third row of Fig. 2 we have three consecutive full cells, hence C = 3, with the first one in
the second column. With this technique we can describe interfaces on a very refined mesh while the storage requirements
are proportional to the length of the interface divided by the fine grid spacing. This representation requires an efficient
numerical algorithm to extract and compress the data in the compact sparse matrix representation. In Fig. 3 we show the
full color function matrix at the coarse level (c) with 24 � 16 cells, and the sparse color function matrices at the two levels
f = c + 2 and f = c + 4. At the intermediate level of refinement each cell of the coarse grid is divided in 16 subcells with the
interface clearly marked on the grid. At the highest level of refinement each coarse cell is subdivided into 256 smaller cells,
The C data distribution on a 5 � 5 Cartesian mesh (top) and the stored data (bottom), including the row number, the number of cells nc, the color
n in the mixed and consecutive full cells and the column position.



Fig. 3. The color function distribution on different meshes (top left) and on the coarse mesh (top right). The compact data memorization with two (bottom
left) and four (bottom right) levels of grid refinement.

6860 A. Cervone et al. / Journal of Computational Physics 229 (2010) 6853–6873
with matrix entries about 16 times those of the coarse grid. The VOF interface at this level is very close to a front tracking
representation with markers.

The dynamics is computed at the coarse level while the fine grid is used to approximate the interface and calculate the
capillary forces. We consider a Piecewise Linear Interface Calculation (VOF/PLIC), that includes the calculation of the refer-
ence phase fluxes across the cell boundary to update the C data at the next time step. In the reconstruction step the interface
is approximated in each mixed cell by a single segment. The normal vector to this segment is computed with the ELVIRA
algorithm which finds the best linear approximation of the interface among a set of six candidates, obtained by using the
color function values on a 3 � 3 block of cells and centered, forward and backward difference schemes for the first derivative.
Each segment is extended to the block, defining a tentative volume fraction value in each cell of the block, and the selected
candidate is the one that minimizes the error between the tentative and the actual values [3,31,35,36]. However due to the
compact representation of the color function, it is not very efficient to extract the block of C data whenever we change the
cell under investigation. For this reason, we have implemented a fast data extraction/compression algorithm that computes
the normals in all the cells of a given row j, by storing also the C data of the rows j � 1 and j + 1 in a temporary N � 3 portion
of the full matrix. We then substitute the data in the row j � 1 with those of row j + 2 and reconstruct the normal for the
mixed cells of row j + 1.

In the advection step we solve the discrete version of (32) written for the color function Cf
i

Cf
i ðt þ DtÞ ¼ Cf

i ðtÞ þ
X4

k¼1

Ui;kðv; ûf ;nÞ; ð33Þ
where i is the cell index, k the index over the cell sides. We use a geometric unsplit area-preserving advection method to
compute the cell boundary fluxes Ui,k [36,3], which requires the projected velocity ûf , the phase indicator v and the normal
vector n computed in the reconstruction step. The matrices containing the two normal components are compressed exactly
in the same way as the C data.

3.3. Numerical implementation of the capillary force

In jet dynamics the numerical implementation of the capillary force must be sufficiently accurate. In this paper the sur-
face tension force is computed at the fine level (f) starting from (12)
ðFf
s ;v

cÞ ¼
Z

Cs

rjn � vc dS; ð34Þ
where we have introduced the curvature j = j1 + j2, with j1 and j2 the principal curvatures in axisymmetric geometry with
cylindrical coordinates r, /, and z. We can easily compute in this geometry the curvature of the interface Cs, given by the
revolution around the z-axis of the interface line Ls of equation r = f(z). Each meridian plane through the z-axis contains
the line Ls and is also perpendicular to the local tangent plane in each point of Cs. The local curvature j1 on Ls is given by
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j1 ¼
f 00ðzÞ

ð1þ f 02ðzÞÞ3=2 : ð35Þ
The other curvature j2 is computed on a third plane that is perpendicular to both the tangent and the meridian planes and
that contains the local normal vector to the line Ls. If we denote with u the angle between the outgoing normal vector and the
z-axis, then
j2 ¼ �
cos u

r
¼ � 1

f ðzÞð1þ f 02ðzÞÞ : ð36Þ
The surface force (34) is rewritten as
ðFf
s ;v

cÞ ¼
Z

Cs

rj1n � vc dSþ
Z

Cs

rj2n � vc dS ð37Þ
where j2 = �cosu/r is known analytically and the computation of the curvature j1 is performed by the introduction of the
two-dimensional Laplace–Beltrami operator.

In the FEM variational formulation, the computation of the curvature with the Laplace–Beltrami operator requires only
the interface position and its computation can be embedded, even implicitly, in the Navier–Stokes solver. In axisymmetric
geometry this operator acts only on the interface line Ls and can be written as
d
ds
¼ ðI � nnÞ � r ð38Þ
with r the two-dimensional gradient operator in the coordinates r and z. Integrating by parts the first term on the r.h.s. of
(37) we obtain
Z
Ls

rj1n � vc d‘ ¼ r
Z

Ls

d2

ds2 xs � vc d‘ ¼ �r
Z

Ls

d
ds

xs �
d
ds

vc d‘: ð39Þ
An extensive mathematical analysis of the Laplace–Beltrami operator for curvature computations in two-phase flow can be
found in [24,37–40]. The mathematical proof of convergence can be found in [37] and an extensive study of spurious cur-
rents for a static droplet is performed in [38] for different finite elements and in particular for Taylor–Hood elements. Spu-
rious current tests with our code return similar rates. The implicit implementation of the tension surface term is in [40] and
an extended new finite element for pressure discontinuities in two-phase flow is proposed in [39].

The interface instabilities depend on small pressure perturbations and an accurate computation of the pressure around
the interface is an important issue. In jet dynamics, interface instabilities may be artificially excited or affected by the pres-
ence of spurious currents, which are unphysical flows generated near an interface where locally the pressure and capillary
forces are not well balanced numerically. Since our goal is to measure the growth rate of the physical instability accurately,
we must eliminate the spurious currents which are present in the static cylindrical solution. In this configuration j1 is zero
and only the surface tension term with curvature j2 produces spurious currents.

A few schemes have been proposed to compensate the pressure term and provide an accurate surface tension represen-
tation in the static case when the curvature is known. Among them we can mention the balanced-force method, described in
[23,14], for Navier–Stokes solvers based on the pressure-projection method or the pressure volumetric compensation meth-
ods described in [24,25,41]. These methods are somewhat similar since they both rely on a consistent discretization and bal-
ance of the forces on the boundary of the cell. For the term containing the curvature j2 we consider a volumetric approach.
The convergence analysis and numerical implementation of the volumetric approach for a droplet in static equilibrium and
its dynamic oscillations can be found in [24,25], where the interface is a continuous chain of segments. In this paper the
chain is discontinuous, but this feature is mitigated by the fact that with the multilevel VOF approach we have more seg-
ments in each cell of the coarse mesh than in the continuous case.

The volumetric approach is based on the divergence theorem, so we write
Z
Cs

rj2vc � ndS ¼
Z

Xl

rr � ðĵ2vcÞdV ¼
Z

X
vrr � ðĵ2vcÞdV ¼

Z
X
vrĵ2r � vcdV þ

Z
X
vrvc � rĵ2 dV : ð40Þ
In (40) ĵ2 can be any extension of j2 over X as long as ĵ2 matches j2 on the interface Cs. If v, which is discontinous on Cs, is
approximated by the discrete values v̂h on the cell vertices, then the surface tension term becomes
Z

Cs

rj2vc � ndS ¼
Z

X
v̂hrĵ2r � vc dV þ

Z
X
v̂hrvc � rĵ2 dV : ð41Þ
Notice that for an equilibrium configuration the first term balances the pressure jump at the interface while the second term
is the source of the spurious currents. Through the extension ĵ2 and the v̂h we transport the forces from the interface inside
the cell to the cell sides, obtaining in this way the desired compensation of the pressure. The extension ĵ2 can be computed
in many ways, however, in the static case, the extended curvature ĵ2 must match the constant value of j2. In particular, in
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the cylindrical configuration we compute the value of j2 on the interface at any z and then extend it uniformly in the radial
direction. The Navier–Stokes equation becomes
cðq;u;u;vÞ þ bðp;vÞ þ aðl;u;vÞ ¼ bðv̂hrĵ2;vÞ þ ðv̂hrrĵ2;vcÞ; ð42Þ
which gives exactly the equilibrium solution p ¼ vhrĵ2 and u = 0 with no spurious currents if the pressure and vh are de-
fined over the same finite dimensional space Sh.

4. Numerical tests

4.1. Linear dispersion equation for jets

As a first test we consider the evolution of small perturbations of an axisymmetric jet, when nonlinear effects are still
negligible. For a correct description of the phenomenon spurious currents must be negligible, since the surface tension term
plays a key role in the numerical evaluation of the dispersion equation that relates the growth rate of the instability to the
physical and geometrical parameters of the liquid jet. An analytical dispersion equation was derived in [42], where it was
shown that asymmetric modes can be excited when the Weber number is greater than a critical value Wec. This value is
a function of the wavelength of the disturbance and the density ratio between the gas and liquid phases. In this paper we
perform only axisymmetric simulations, then We must be smaller than Wec. We recall briefly the dispersion relation follow-
ing the derivation in [42], which considers the stability of a wave of very small amplitude on a cylindrical jet of infinite
length. The liquid jet with density ql and radius R has a uniform relative velocity U with respect to the external gas with
density qg. The two fluids are assumed to be incompressible and inviscid. If the system is subject to a small disturbance,
the expressions for the linear perturbed quantities are
p0jðr; h; z; tÞ ¼ pjðrÞexpðiðkzþmhÞ þ atÞ; ð43Þ
u0jðr; h; z; tÞ ¼ ujðrÞexpðiðkxþmhÞ þ atÞ; ð44Þ
where j = l, g and a is the complex growth rate with respect to time. For the azimuthal mode m = 0, also known as varicose or
sausage mode, the cross section of the jet is circular and its radius varies only with the z-coordinate. When m > 0 the modes
are asymmetric. For the mode m = 1 the cross section of the jet is still circular but the axis of the perturbed jet describes a
spiral around the z-axis. This is usually named snake or kink mode. For m = 2, the cross section of the jet is elliptic, and an
originally circular jet deforms progressively into a flat curling sheet. For larger m values, the modes are characterized by
m oscillations along the unperturbed circumference.

The analysis of the dispersion relation for the perturbations (43) and (44) in the presence of an external fluid phase shows
that surface tension has a stabilizing effect on asymmetric modes that can only develop for sufficiently large Weber num-
bers. The critical Weber number (Wec)m is defined as the Weber number over which the growth rate of the mth mode is
greater than zero. For an inviscid jet the following relation has been derived [42]
ðWecÞm ¼
ðcm þ qbmÞ½m2 þ ðkRÞ2 � 1�

kRqcmbm
ð45Þ
with
cm ¼ k
ImðkRÞ
I0mðkRÞ

; bm ¼ �k
KmðkRÞ
K 0mðkRÞ

; ð46Þ
where Im and Km are the mth order modified Bessel functions of the first and second kind, I0m and K 0m their first derivative and
q = qg/ql. In the limit of both short and long wavelengths the first asymmetric mode to be excited is the m = 1 mode. More
particularly, with a long wavelength disturbance the m = 1 mode grows when We > (1 + q)/q, and for a short wavelength
when We > ((1 + q)k R)/q. The critical Weber number Wec is always proportional to the inverse of the density ratio q and
as q ? 0 then Wec ?1, in agreement with Rayleigh’s theory [43], and the mode is always axisymmetric. If q = 1.3 � 10�3,
as in an air/water system, the lowest critical Weber number is Wec � 769, and m = 1.

Below this critical value only the m = 0 mode is present and the growth rate a is the solution of the following character-
istic equation [42]
ðqlc0 þ qgb0Þa2 þ 2ikaðqgb0ug þ qlc0ulÞ � k2 qgb0u2
g þ qlc0u2

l

� �
� k

r
R2 ½1� ðkRÞ2� ¼ 0: ð47Þ
If we set a = ar + iai in the previous quadratic equation then the real part of the roots is given by
ar ¼ 	
U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0b0qðkRÞ2

ðc0 þ b0qÞ2
þ 1

We
ðkRÞ½1� ðkRÞ2�
ðc0 þ b0qÞ

s
; ð48Þ
with We = (RU2ql)/r.
There are three interesting cases of (48). The first is the Rayleigh equation for a liquid jet in the vacuum obtained as q

approaches zero
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ar ¼ 	
U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

We
ðkRÞ½1� ðkRÞ2�

c0

s
: ð49Þ
The short wavelength limit is obtained for kR ?1 and b0 = c0 = 1
ar ¼ 	
U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkRÞ2q

ð1þ qÞ2
þ 1

We
ðkRÞ½1� ðkRÞ2�

1þ q

s
: ð50Þ
Finally, the long wavelength limit has k = 2pR/k ? 0, b0 ? �kRln (kR) and c0 ? 2/(kR), then
ar ¼ 	
U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ðkRÞ3lnðkRÞq
½2� qðkRÞ2lnðkRÞ�2

þ 1
We

ðkRÞ2½1� ðkRÞ2�
½2� qðkRÞ2lnðkRÞ�

s
: ð51Þ
Eq. (51) shows that the larger the Weber number the more stable the liquid jet to axisymmetric perturbations of long wave-
length. In order to reproduce the analytical result of (49) we consider the cylindrical domain shown in Fig. 4. A liquid of den-
sity ql and viscosity ll is located within a cylindrical region Xl of radius R. The liquid is surrounded by a gas of density qg and
viscosity lg. We assume periodic boundary conditions on the two bases of the cylinder and free flow conditions on its lateral
surface. The initial velocity field in both fluids is zero and the position rI of the interface is perturbed in the form
rI ¼ rIðzÞ ¼ Rþ d0 cos
2pz
k

� �
; ð52Þ
where d0 is the initial amplitude and k the wavelength of the perturbation.
In order to compute the growth rate we need to use very small values of d0 and of the velocity field. If the capillary force

(34) is not carefully discretized, for d0 that goes to zero and with a small initial velocity, the motion could be dominated by
the spurious currents. Since d0 can be chosen very small so that j1 ’ 0, then the spurious currents at the initial time can be
generated only by the surface tension term containing the curvature j2. With the volumetric approach given by (41) the spu-
rious currents are indeed negligible and the pressure jump is correctly reproduced.

To compute the growth rate we use the linearized version of (26) to evolve in time the velocity and pressure fields. The
procedure is divided in two steps as shown in Fig. 5. In the first step, we start at time t = 0 with the velocity and pressure
profiles of the steady-state solution but with the perturbed interface of (52) and evolve the system with very small time
Fig. 4. Initial axisymmetric geometry.
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. 5. Time evolution of the growth rate ar for the m = 0 mode during the initial transient (left) and after the restart of the computation (right).
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steps. When the growth rate ar approaches a stationary value, the velocity and pressure fields are then consistent with the
perturbed interface and we assume these profiles as the initial configuration for the second part of the simulation. We then
monitor the time evolution of the value of ar that should remain about constant, as shown on the right of Fig. 5.

In Fig. 6 we plot the dispersion relation of the growth rate ar as a function of the nondimensional wave number kR, for
different resolutions of the coarse mesh and different levels of refinement. The radius of the liquid cylinder is
R = 0.328125 � 10�3 m with a perturbation amplitude d0 = 0.01R. The fluid density is ql = 1000 kg/m3, its viscosity
ll = 0.0316 kg/ms and the surface tension coefficient r = 0.0725 J/m2. The density ratio is ql/qg = 1000, and the viscosity ratio
ll/lg = 100. For these physical parameters, the nondimensional numbers are Re = 10.38, We = 4.53 and Oh = 0.205, with the
reference velocity computed as U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj2=ql

p
. The curves on the left are obtained with 32, 64, 128 cells in the radial direction

with two refinement levels for the color function, f = c + 2. The curves on the right consider 64 cells in the radial direction and
2, 3, 4 refinement levels. In the two graphs we also plot the inviscid theoretical curve of (49). We observe that for this test the
numerical results are slightly different only at the lowest resolution with 32 cells, while they are rather insensitive to the
number of refinement levels.

In Fig. 7 we show how the dispersion relation of the growth rate changes with the viscosity ratio ll/lg for the three values
10, 100, 1000. Since the density ratio is rather high, the results are already close to the asymptotic line at moderate viscosity
ratios, ll/lg � 100.

Finally, in Fig. 8 we compute the dispersion relation of the growth rate by varying the viscosity ll of the liquid phase. In
the first graph the physical parameters are those of Fig. 6, in the second case the liquid viscosity is changed, ll = 0.01 kg/ms
then Oh = 0.065, but the viscosity ratio remains the same. The continuous lines in Fig. 8 represent the dispersion relation
from the linear stability analysis of a viscous liquid jet surrounded by the vacuum, qg = lg = 0, derived by Weber [44]. These
results should be compared with those obtained in [5] with a coupled level set/VOF/ghost fluid method that progressively
underestimates the growth rate as the wave number increases. The general agreement with the theoretical dispersion rela-
tion does not change as we decrease by an order of magnitude the liquid viscosity, i.e. ll = 0.0031, 0.001.
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Fig. 6. Dispersion results for ll/lg = 100 for different mesh resolutions on the left (32 (A), 64 (B), 128 (C)) and for a different number of refinement levels on
the right (f = c + 2 (A), f = c + 3 (B), f = c + 4 (C)). In both graphs it is also plotted the inviscid theoretical curve of (49) (D).
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Fig. 7. Numerical growth rate a for different viscosity ratios ll/lg (10 (A), 100 (B) and 1000 (C)). In the graph it is also plotted the inviscid theoretical curve
of (49) (D).
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4.2. Axisymmetric pulsating jets

The evolution of a liquid jet exiting a nozzle is strongly influenced by the interaction with the surrounding gas. This phe-
nomenon has been studied extensively theoretically, numerically and experimentally [45]. However a real jet cannot be eas-
ily reproduced, since the instabilities of the process are initiated by small perturbations which are generated at the inlet and
Table 1
The maximum value of kSfc

c k1=kFsk1 for the coarse grid with 32 � 192 cells, four different refinement levels, in the nondimensional time interval [0,2].

level 1 2 3 4

Cells 64 � 384 128 � 768 256 � 1536 512 � 3072
Error 8.2 � 10�2 1.2 � 10�2 5.1 � 10�4 7.1 � 10�4
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Fig. 9. Evolution of the interface line for the three different grid resolutions: 32 � 192 (A), 64 � 384 (B) and 128 � 768 (C), at the nondimensional times
t = 0.5, 1, 2, 3.
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also upstream in the bulk of the jet. These perturbations are mostly of stochastic nature, related to turbulence and it is not
easy to quantify them. The aim of this section is to study the evolution of jets with a sinusoidal oscillation superposed to a
constant injection velocity that allows the observation of some elementary and well-defined effects such as a the breakup of
the whole column and the formation of single droplets and threads. Thus we consider the following expression of the inlet
velocity of the liquid jet flowing into a stationary gas
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U ¼ U0ð1þ A sinðxtÞÞ ð53Þ
with xk = U0. Since we are interested in jets with a small diameter the gravity term can be neglected and the Froude number
is assumed to be infinite. We are left with four dimensionless parameters governing the jet decay: the driving amplitude A,
the nondimensional or reduced wavenumber kR, the Weber number We and the Ohnesorge number Oh. The range of possible
dynamics in this parametric space has never been fully explored. In this study we only consider three different wavelengths,
around the maximum of Fig. 8, and three inlet velocity up to a Weber number greater than the critical value. We also monitor
the magnitude of the transfer operator Sfc with respect to the capillary force term.

4.2.1. Convergence test
First we study a simple jet in order to determine a consistent set of fine and coarse meshes and verify that Sfc is always

small during the simulation. To address this issue we consider a jet of fluid with density ql = 1000 kg/m3, viscosity
ll = 0.003 kg/ms and surface tension coefficient r = 0.0725 J/m2, injected with velocity U0 = 1 m/s from a hole with radius
R = 0.3164 � 10�3 m. In this case we have Re = 210.93, We = 8.73 and Oh = 0.014. The density ratio between the liquid and
gas phases is again 1000 and the viscosity ratio 100. The amplitude of the sinusoidal oscillation of the inlet velocity is
A = 0.5, its wavelength k = 3.5 � 10�3 m, then the reduced wavenumber is kR = 0.57. For this set of physical parameters
the critical Weber number is Wec � 1000, and the jet decay is fully axisymmetric. At the initial time the gas fills in the whole
computational domain and the liquid is injected from the left boundary of Fig. 1 with the velocity defined in (53). The intro-
duction of a pulsating source drives the formation of the droplet and allows us to analyze with great detail the breakup pro-
cess in a limited domain in the axial direction (Lz � 18R).

We wish to determine a solution of the jet problem with the multilevel VOF method which is well resolved at the coarse
level, Eqs. (31) and (32), with the transfer operator (27) being negligible. First we consider simulations with only one level
and at different resolutions with the result that the interface, in the two meshes with 16 � 96 and 32 � 192 cells, breaks very
irregularly with the formation of several small droplets. The computations produce a single stable droplet only for resolu-
tions equal or higher than 128 � 768. This will be considered the lowest resolution for the fine grid.

In this multilevel test we consider a coarse grid with 32 � 192 cells and four levels of refinement (f = c + l, l = 1, 2, 3, 4),
that are obtained with a simple midpoint rule where the number of cells in each direction doubles as we consider the next
Fig. 11. Jet evolution for the intermediate wave length k2 at times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 (left to right and top to bottom).



6868 A. Cervone et al. / Journal of Computational Physics 229 (2010) 6853–6873
more refined grid. The most refined fine mesh has 512 � 3072 cells. For i = 1 the interface breaks as in the single-level sim-
ulations, while for i = 2, 3, 4 the color function is well resolved, however the norm of the transfer operators Sfc in (27) is not
always negligible. The postprocessing computation of the operator Sfc

c in the coarse grid can be performed with the projection
Pcf and the restriction Rfc operators that are already used in the multigrid solver of the Navier–Stokes equations. We first
compute (27) for all basis functions vf

i at the fine level
Sfc
f ;v

f
i

� �
¼ SfcðPcf ½ðuc;pcÞ�Þ;vf

i

� �
: ð54Þ
We then use the restriction operator Rfc to compute the projection Sfc
c over the coarse grid
Sfc
c ;v

c
j

� �
¼ Rfc Sfc

f ;v
f
i

� �h i
ð55Þ
for all basis functions vf
j at the coarse level. In Table 1 we report the maximum value during the time interval [0,2] of the

ratio between the transfer operator Sfc and the capillary force term. The transfer operator can be neglected for the two refine-
ment levels l = 3, 4, for which the computation of the local normals and curvatures can be considered accurate for the given
coarse grid.

We remark that this does not imply that the pressure and velocity fields at the coarse resolution 32 � 192 are fully re-
solved, but only that the interface representation at the two highest refinement levels is accurate for the coarse grid. In order
to discuss the accuracy of the solution we consider three different coarse grids, each of them with a fine mesh with four
refinement levels: case A with 32 � 192 cells, case B with 64 � 384 cells and case C with 128 � 768 cells. In Fig. 9 we show
the evolution of the interface line, always computed with the nondimensional time step Dt = 1 � 10�3. The evaluation of the
maximum value in the whole simulation of the ratio between the transfer operator and the capillary force gives 8.03 � 10�4

for case A, 3.63 � 10�5 for case B and 1.04 � 10�5 for case C. Even if this ratio is very small for all three cases the interface at
the lowest resolution does not overlap precisely with the solution of the other two resolutions. The solution of cases B and C
Fig. 12. Jet evolution for the shortest wave length k1 at times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 (left to right and top to bottom).
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agrees very well also for the pressure and velocity fields. A further investigation with the intermediate coarse grid with
64 � 384 cells and three levels of refinement has shown that its solution is very close to that of cases B and C. This config-
uration is then assumed as the base discretization for the simulations in the rest of the paper.

We remark that the use of different refinement levels does not affect substantially the CPU time and the memory needs.
Furthermore, a simulation with velocity, pressure and color function fields at the same level would require, depending on
the solution method, a huge amount of memory space when matrices and preconditioners are stored as sparse matrices. Higher
resolutions are usually required for the color function with respect to the other fields, where the local radius of curvature of the
interface is of the order of the velocity/pressure grid spacing, in order to avoid artificial breakup and numerical generation of
droplets. With the multilevel approach we try to balance between these two contrasting aspects of the numerical simulations.

In Fig. 10 we show the interface profile and the pressure, color function and velocity distributions on axis at different
times. The sinusoidal oscillation of the inlet velocity drives the formation of a bulge and a neck that further develop under
the effect of the instability. Ultimately this leads to the formation of a droplet and a thread. At the beginning of the simu-
lation the oscillatory behavior of both pressure and velocity is driven by the applied boundary conditions. When the thread
breaks near its head, a main drop is formed that oscillates under the action of surface tension, reaching quickly a nearly
spherical shape with a flat pressure profile inside, and translates with a velocity close to the inlet value U0. The thread re-
treats rapidly, due to the very high value of the local curvature. Then a second breakup occurs near the tail of the thread
generating a satellite droplet that contracts and expands quickly along the axis till it reaches a spherical form. During these
oscillations the satellite is first reached and then absorbed by the incoming jet head. The jet evolution is almost the same if
we consider higher refinement levels but during the breakup some differences do appear. It is well known that with a VOF
algorithm the breakup and coalescence are automatic processes that at low resolution can change appreciably with grid
refinement. In this simulation the fluid thread forms a satellite drop by breaking first near its head and then at its tail.
The final satellite position depends on the timing of these two events. If the tail and the head break at the same time the
droplet oscillates but its center of mass is more or less stationary; if the thread head breaks well in advance with respect
to the tail, then the capillary force contracts it towards the incoming jet and the droplet is absorbed.
Fig. 13. Jet evolution for the longest wave length k3 at times 0.5, 1, 2, 2.5, 3, 3.5, 4, 5, 6, 7.5 (left to right and top to bottom).
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We have performed a number of simulations with different refined meshes and can conclude that the solution shown in
Fig. 10 is accurate up to the breakup. However, it is rather difficult to extrapolate the exact influence of the mesh resolution
over the overall motion and in particular during the breakup. The breakup time depends on the grid spacing and a little time
difference can have a relevant impact on the fast dynamics driven by the very high values of the curvature. To reduce the
uncertainty in the timing of the breakup and the next fast dynamics, one should consider a higher resolution in the coarse
grid, possibly with adaptive mesh refinement. Alternatively, one can introduce a breakup mechanism based on a physical
model rather than an automatic geometrical process due to the mesh resolution. However, such a mechanism would prob-
ably be rather cumbersome when dealing with the three-dimensional atomization of a fast jet.

4.2.2. Pulsating jets with different wavelengths
In this section we try to reproduce sequences of physical events that are typical of a decaying liquid jet when it is forced

with different wavelengths. The most significant parameter of the jet decay is the reduced wave number kR = 2pR/k. At the
maximum growth rate the value of kR is in the range between 0.6 and 0.7 (see Fig. 8) and the distance between the inlet
section and the first drop is the shortest one. Such a distance is usually called the breakup length. Here we consider three
different wavelengths, k1 = 2.5 � 10�3 m, k2 = 3.5 � 10�3 m and k3 = 7.5 � 10�3 m, while the value of the other physical quan-
tities is that of the previous section. As a matter of fact the intermediate wavelength k2 is precisely that case and in Fig. 11 we
see first the generation of the jet and then the formation of the main drop. The liquid bridge breaks in sequence at its head
and at its tail and forms a satellite droplet. This droplet relaxes to a spherical shape and then is absorbed by the incoming jet.
For this case we have kR � 0.60 and from Fig. 8 we observe that this value is very close to the reduced wave number of the
maximum growth rate.

As in the previous Section 4.2.1 we consider a coarse grid with 64 � 384 cells, three levels of grid refinement and a non-
dimensional time step Dt = 1 � 10�3. The jet evolution for the shortest wave length k1 is reported in Fig. 12 at different times.
Fig. 14. Jet evolution with inlet velocity U0 = 10 m/s at times 1, 2, 3.5, 4, 4.5 (two different views in each row).
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After the initial growth of the instability, we observe an almost spherical drop connected by a thin thread of roughly constant
thickness. The thread again breaks close to the droplet and then close to the jet. The fragment, under the action of surface
tension, becomes a satellite of spherical shape but at a later time. In this case kR = 0.825 > 0.7 and from Fig. 8 we see that the
growth rate is substantially smaller than in the previous case, the breakup length is longer and the whole process is also
slower in time.

The jet evolution for the longest wave length k3 is reported in Fig. 13 at different times. Again, after the initial growth
which is close to a sinusoidal wave, a spherical bulge develops at the end of the jet. This bulge is connected to a long and
thin thread of constant thickness and now it takes quite a long time before it breaks. In this case kR = 0.275 < 0.7 and the
corresponding growth rate is approximately half of the maximum value. The breakup length is longer than in the other
two cases and the thread breaks first near its tail.

As in the previous section, by using different fine grids, we have found that the jet evolution before the breaking is accu-
rate, but it is rather difficult to extrapolate the exact influence of the mesh resolution over the breakup mechanism which
seems rather mesh dependent especially for the pulsating source with the longest wavelength where the fluid filament be-
comes very thin and long. The transfer operator Sfc is alway very small before the breaking while, close to the breaking, it
increases indicating that the resolution of the interface may be not sufficient.
4.2.3. Pulsating jets with different inlet velocities
In this section we investigate the jet behavior with different inlet velocities. As we increase this velocity, turbulence be-

comes the dominant mechanism that governs the interface evolution. Since we are interested in direct numerical simula-
Fig. 15. Jet evolution with inlet velocity U0 = 100 m/s at times 1.5, 2, 2.5, 3, 3.5 (two different views in each row).
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tions, we do not consider velocity regimes that requires subgrid modeling of turbulent phenomena. We assume also that the
transfer operator Sfc is small. This hypothesis can be evaluated a posteriori by a direct computation of this operator. Further-
more the prescription of turbulent inflow boundary conditions is still a challenging task when studying the initial evolution
of a jet right after the nozzle exit. A very important issue in this type of simulations is the possibility to develop asymmetric
instabilities. Since our simulations are axisymmetric we should avoid regimes with three-dimensional fluid structures such
as fingers, filaments or secondary droplets. We can check when this happens by computing the critical Weber number Wec.
Actually, turbulent and asymmetric jets are the most common and most interesting flows in engineering applications and we
plan to investigate them in a different fully three-dimensional paper.

We consider two cases, one with We < Wec and another one with We > Wec. The first case corresponds to an axisymmetric
jet, the second one should develop three-dimensional structures and therefore cannot be properly simulated with an axi-
symmetric model. For the first case we consider a decaying jet with an oscillating inlet velocity with wavelength
k = 2.5 � 10�3 m, velocity U0 = 10 m/s and amplitude A = 0.25. The liquid jet has density ql = 1000 kg/m3, viscosity
ll = 0.01 kg/ms and surface tension coefficient r = 0.0725 J/m2. The jet flows from a hole with diameter
D = 0.328125 � 10�3 m into the computational domain filled with a gas with density ratio 1000 and viscosity ratio 100. With
these parameters we find Re = 328, We = 452 and Oh = 0.065. The critical Weber number is Wec � 1000, then We < Wec and an
axisymmetric simulation is appropriate. The pressure and velocity fields are computed on a coarse mesh with 64 � 384 cells
and four levels of grid refinement for the color function. The constant nondimensional time step is now Dt = 1 � 10�4. The
transfer operator Sfc is quite small at the beginning of the simulation but becomes of appreciable size when t > 4, as the fluid
structures near the jet head become smaller and smaller. The evolution of the interface is presented in Fig. 14 at different
times. As the liquid accumulates near the jet head the forward motion produces a cylindrical sheet that surrounds the main
liquid core with an interface development similar to that obtained in the Rayleigh–Taylor instability. Simulation with finer
grids show that the simulation in Fig. 14 is quite accurate and no breaking appears.

In Fig. 15 we show the jet evolution for an inlet velocity U0 = 100 m/s. The physical properties of the two fluids and the
geometry are those of the previous case, but we have increased the surface tension coefficient, r = 1 J/m2. The computed We-
ber number is We = 3281 which is bigger than the critical value Wec � 1000. A simple LES model is used together with an
upwind scheme to cope with the high Reynolds numbers. In Fig. 15 it is possible to see rings of fluid forming away from
the interface. This is clearly not physical, since in real applications the structures that develop on the surface of high speed
jets are fingers that break in very little droplets. However, these are three-dimensional structures that cannot be simulated
by an axisymmetric code. In this case we do not observe convergence for the pressure and velocity fields. In fact the transfer
operator (55) is large especially at times t > 4, when the structures inside the fluid head are quite small and fragmented. Even
if the fine grid is very refined so that the interface is close to a continuous line, this is not sufficient to ensure an accurate
force computation due to the small and fragmented fluid structures. In this case, the transfer operator cannot be neglected,
but it should be modeled as a macroscopic term to be evaluated at the coarse level.
5. Conclusions

A multilevel VOF approach has been coupled to a robust FEM solver of the Navier–Stokes equations in axisymmetric
geometry to allow two-phase flow simulations with high density ratios and a reduced amount of spurious currents. The rep-
resentation of the color function over a fine grid has been introduced in order to progressively reduce the discontinuity of the
interface at the cell boundary, by increasing the level of grid refinement. In the refined grid the automatic breakup and coa-
lescence of small liquid structures occur at a spatial scale which is much smaller than the coarse grid spacing, where the
pressure and velocity fields are computed. To reduce memory requirements, we have implemented on the fine grid a com-
pact storage scheme which memorizes the color function data only in the mixed cells. A more precise computation of the
capillary force is performed by using the Laplace–Beltrami operator and a volumetric approach for the two principal curva-
tures, respectively. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of
the proposed scheme. In particular, we have first compared in a satisfactory way the numerical growth rate of several modes
to its analytical value from a linear dispersion relation for axisymmetric jets. Then we have simulated a number of jets, with
a given sinusoidal oscillation of the inlet velocity, to reproduce the primary breakup of the jet column by varying the fre-
quency of the oscillation and the magnitude of the inlet velocity. The agreement with the analytical results is rather good
as long as the evolution of the jet remains axisymmetric. An unphysical behavior, characterized by the formation of cylin-
drical structures at the jet surface, is instead shown when the Weber number exceeds the critical value. These conditions
require a fully three–dimensional approach.
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